Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Biomolecules ; 14(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397474

RESUMO

Pulmonary fibrosis, severe alveolitis, and the inability to restore alveolar epithelial architecture are primary causes of respiratory failure in fatal COVID-19 cases. However, the factors contributing to abnormal fibrosis in critically ill COVID-19 patients remain unclear. This study analyzed the histopathology of lung specimens from eight COVID-19 and six non-COVID-19 postmortems. We assessed the distribution and changes in extracellular matrix (ECM) proteins, including elastin and collagen, in lung alveoli through morphometric analyses. Our findings reveal the significant degradation of elastin fibers along the thin alveolar walls of the lung parenchyma, a process that precedes the onset of interstitial collagen deposition and widespread intra-alveolar fibrosis. Lungs with collapsed alveoli and organized fibrotic regions showed extensive fragmentation of elastin fibers, accompanied by alveolar epithelial cell death. Immunoblotting of lung autopsy tissue extracts confirmed elastin degradation. Importantly, we found that the loss of elastin was strongly correlated with the induction of neutrophil elastase (NE), a potent protease that degrades ECM. This study affirms the critical role of neutrophils and neutrophil enzymes in the pathogenesis of COVID-19. Consistently, we observed increased staining for peptidyl arginine deiminase, a marker for neutrophil extracellular trap release, and myeloperoxidase, an enzyme-generating reactive oxygen radical, indicating active neutrophil involvement in lung pathology. These findings place neutrophils and elastin degradation at the center of impaired alveolar function and argue that elastolysis and alveolitis trigger abnormal ECM repair and fibrosis in fatal COVID-19 cases. Importantly, this study has implications for severe COVID-19 complications, including long COVID and other chronic inflammatory and fibrotic disorders.


Assuntos
COVID-19 , Neutrófilos , Humanos , Neutrófilos/metabolismo , Síndrome de COVID-19 Pós-Aguda , COVID-19/metabolismo , Pulmão/metabolismo , Elastina , Colágeno/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Endopeptidases , Matriz Extracelular/metabolismo , Fibrose
3.
J Med Virol ; 95(12): e29286, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087452

RESUMO

In a mouse model of influenza pneumonia, we previously documented that proliferating alveolar type II (AT2) cells are the major stem cells involved in early lung recovery. Profiling of microRNAs revealed significant dysregulation of specific ones, including miR-21 and miR-99a. Moreover, miR-145 is known to exhibit antagonism to miR-21. This follow-up study investigated the roles of microRNAs miR-21, miR-99a, and miR-145 in the murine pulmonary regenerative process and inflammation during influenza pneumonia. Inhibition of miR-21 resulted in severe morbidity, and in significantly decreased proliferating AT2 cells due to impaired transition from innate to adaptive immune responses. Knockdown of miR-99a culminated in moderate morbidity, with a significant increase in proliferating AT2 cells that may be linked to PTEN downregulation. In contrast, miR-145 antagonism did not impact morbidity nor the proliferating AT2 cell population, and was associated with downregulation of TNF-alpha, IL1-beta, YM1, and LY6G. Hence, a complex interplay exists between expression of specific miRNAs, lung regeneration, and inflammation during recovery from influenza pneumonia. Inhibition of miR-21 and miR-99a (but not miR-145) can lead to deleterious cellular and molecular effects on pulmonary repair and inflammatory processes during influenza pneumonia.


Assuntos
Influenza Humana , MicroRNAs , Pneumonia , Animais , Humanos , Camundongos , Seguimentos , Inflamação/metabolismo , Influenza Humana/metabolismo , Pulmão/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Pneumonia/genética , Regeneração
5.
Cell Death Differ ; 28(11): 3125-3139, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34031543

RESUMO

SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations have signs of dysregulated innate and adaptive immune responses. Emerging evidence implicates neutrophils and the disbalance between neutrophil extracellular trap (NET) formation and degradation plays a central role in the pathophysiology of inflammation, coagulopathy, organ damage, and immunothrombosis that characterize severe cases of COVID-19. Here, we discuss the evidence supporting a role for NETs in COVID-19 manifestations and present putative mechanisms, by which NETs promote tissue injury and immunothrombosis. We present therapeutic strategies, which have been successful in the treatment of immunο-inflammatory disorders and which target dysregulated NET formation or degradation, as potential approaches that may benefit patients with severe COVID-19.


Assuntos
COVID-19/patologia , Armadilhas Extracelulares/metabolismo , Neutrófilos/imunologia , COVID-19/complicações , COVID-19/imunologia , Citrulinação , Ativação do Complemento , Humanos , Neutrófilos/metabolismo , Ativação Plaquetária , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Trombose/etiologia
7.
Front Pharmacol ; 11: 870, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581816

RESUMO

There is an urgent need for new therapeutic strategies to contain the spread of the novel coronavirus disease 2019 (COVID-19) and to curtail its most severe complications. Severely ill patients experience pathologic manifestations of acute respiratory distress syndrome (ARDS), and clinical reports demonstrate striking neutrophilia, elevated levels of multiple cytokines, and an exaggerated inflammatory response in fatal COVID-19. Mechanical respirator devices are the most widely applied therapy for ARDS in COVID-19, yet mechanical ventilation achieves strikingly poor survival. Many patients, who recover, experience impaired cognition or physical disability. In this review, we argue the need to develop therapies aimed at inhibiting neutrophil recruitment, activation, degranulation, and neutrophil extracellular trap (NET) release. Moreover, we suggest that currently available pharmacologic approaches should be tested as treatments for ARDS in COVID-19. In our view, targeting host-mediated immunopathology holds promise to alleviate progressive pathologic complications of ARDS and reduce morbidities and mortalities in severely ill patients with COVID-19.

8.
Front Genet ; 11: 612571, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613621

RESUMO

Genomic sequencing has played a major role in understanding the pathogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the current pandemic, it is essential that SARS-CoV-2 viruses are sequenced regularly to determine mutations and genomic modifications in different geographical locations. In this study, we sequenced SARS-CoV-2 from five clinical samples obtained in Oklahoma, United States during different time points of pandemic presence in the state. One sample from the initial days of the pandemic in the state and four during the peak in Oklahoma were sequenced. Previously reported mutations including D614G in S gene, P4715L in ORF1ab, S194L, R203K, and G204R in N gene were identified in the genomes sequenced in this study. Possible novel mutations were also detected in the S gene (G1167V), ORF1ab (A6269S and P3371S), ORF7b (T28I), and ORF8 (G96R). Phylogenetic analysis of the genomes showed similarity to other SARS-CoV-2 viruses reported from across the globe. Structural characterization indicates that the mutations in S gene possibly influences conformational flexibility and motion of the spike protein, and the mutations in N gene are associated with disordered linker region within the nucleocapsid protein.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31041196

RESUMO

Exaggerated host innate immune responses have been implicated in severe influenza pneumonia. We have previously demonstrated that excessive neutrophils recruited during influenza infection drive pulmonary pathology through induction of neutrophil extracellular traps (NETs) and release of extracellular histones. Chemokine receptors (CRs) are essential in the recruitment and activation of leukocytes. Although neutrophils have been implicated in influenza pathogenesis, little is known about their phenotypic changes, including expression of CRs occurring in the infected -lung microenvironment. Here, we examined CC and CXC CRs detection in circulating as well as lung-recruited neutrophils during influenza infection in mice using flow cytometry analyses. Our studies revealed that lung-recruited neutrophils displayed induction of CRs, including CCR1, CCR2, CCR3, CCR5, CXCR1, CXCR3, and CXCR4, all of which were marginally induced in circulating neutrophils. CXCR2 was the most predominant CR observed in both circulating and lung-infiltrated neutrophils after infection. The stimulation of these induced CRs modulated neutrophil phagocytic activity, ligand-specific neutrophil migration, bacterial killing, and NETs induction ex vivo. These findings indicate that neutrophils induce a novel CR repertoire in the infectious lung microenvironment, which alters their functionality during influenza pneumonia.


Assuntos
Neutrófilos/imunologia , Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/imunologia , Pneumonia Viral/imunologia , Receptores de Quimiocinas/biossíntese , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Camundongos , Neutrófilos/química
11.
Front Immunol ; 7: 289, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27531997

RESUMO

Obesity is an independent risk factor for severe outcome of influenza infection. Higher dietary fat consumption has been linked to greater morbidity and severe influenza in mouse models. However, the extent of generation of neutrophil extracellular traps (NETs or NETosis) in obese individuals during influenza pneumonia is hitherto unknown. This study investigated pulmonary NETs generation in BALB/c mice fed with high-fat diet (HFD) and low-fat diet (LFD), during the course of influenza pneumonia. Clinical disease progression, histopathology, lung reactive oxygen species, and myeloperoxidase activity were also compared. Consumption of HFD over 18 weeks led to significantly higher body weight, body mass index, and adiposity in BALB/c mice compared with LFD. Lethal challenge of mice (on HFD and LFD) with influenza A/PR/8/34 (H1N1) virus led to similar body weight loss and histopathologic severity. However, NETs were formed at relatively higher levels in mice fed with HFD, despite the absence of significant difference in disease progression between HFD- and LFD-fed mice.

12.
Am J Pathol ; 179(1): 199-210, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21703402

RESUMO

Complications of acute respiratory distress syndrome (ARDS) are common among critically ill patients infected with highly pathogenic influenza viruses. Macrophages and neutrophils constitute the majority of cells recruited into infected lungs, and are associated with immunopathology in influenza pneumonia. We examined pathological manifestations in models of macrophage- or neutrophil-depleted mice challenged with sublethal doses of influenza A virus H1N1 strain PR8. Infected mice depleted of macrophages displayed excessive neutrophilic infiltration, alveolar damage, and increased viral load, later progressing into ARDS-like pathological signs with diffuse alveolar damage, pulmonary edema, hemorrhage, and hypoxemia. In contrast, neutrophil-depleted animals showed mild pathology in lungs. The brochoalveolar lavage fluid of infected macrophage-depleted mice exhibited elevated protein content, T1-α, thrombomodulin, matrix metalloproteinase-9, and myeloperoxidase activities indicating augmented alveolar-capillary damage, compared to neutrophil-depleted animals. We provide evidence for the formation of neutrophil extracellular traps (NETs), entangled with alveoli in areas of tissue injury, suggesting their potential link with lung damage. When co-incubated with infected alveolar epithelial cells in vitro, neutrophils from infected lungs strongly induced NETs generation, and augmented endothelial damage. NETs induction was abrogated by anti-myeloperoxidase antibody and an inhibitor of superoxide dismutase, thus implying that NETs generation is induced by redox enzymes in influenza pneumonia. These findings support the pathogenic effects of excessive neutrophils in acute lung injury of influenza pneumonia by instigating alveolar-capillary damage.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Vírus da Influenza A Subtipo H1N1/imunologia , Neutrófilos/imunologia , Infecções por Orthomyxoviridae/complicações , Pneumonia/complicações , Síndrome do Desconforto Respiratório/imunologia , Animais , Western Blotting , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Cães , Feminino , Técnicas Imunoenzimáticas , Rim/citologia , Rim/imunologia , Rim/virologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/metabolismo , Neutrófilos/patologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Peroxidase/metabolismo , Pneumonia/patologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/virologia , Superóxido Dismutase/metabolismo
13.
J Virol ; 84(14): 7105-13, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20444902

RESUMO

The threat of a pandemic spread of highly virulent influenza A viruses currently represents a top global public health problem. Mass vaccination remains the most effective way to combat influenza virus. However, current vaccination strategies face the challenge to meet the demands in a pandemic situation. In a mouse model of severe influenza virus-induced pneumonitis, we observed that prior nasal administration of an attenuated strain of Bordetella pertussis (BPZE1) provided effective and sustained protection against lethal challenge with two different influenza A virus subtypes. In contrast to most cross-protective effects reported so far, the protective window offered upon nasal treatment with BPZE1 lasted up to at least 12 weeks, suggesting a unique mechanism(s) involved in the protection. No significant differences in viral loads were observed between BPZE1-treated and control mice, indicating that the cross-protective mechanism(s) does not directly target the viral particles and/or infected cells. This was further confirmed by the absence of cross-reactive antibodies and T cells in serum transfer and in vitro restimulation experiments, respectively. Instead, compared to infected control mice, BPZE1-treated animals displayed markedly reduced lung inflammation and tissue damage, decreased neutrophil infiltration, and strong suppression of the production of major proinflammatory mediators in their bronchoalveolar fluids (BALFs). Our findings thus indicate that protection against influenza virus-induced severe pneumonitis can be achieved through attenuation of exaggerated cytokine-mediated inflammation. Furthermore, nasal treatment with live attenuated B. pertussis offers a potential alternative to conventional approaches in the fight against one of the most frightening current global public health threats.


Assuntos
Bordetella pertussis/imunologia , Proteção Cruzada , Citocinas/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Imunidade Adaptativa , Administração Intranasal , Animais , Bordetella pertussis/patogenicidade , Quimiocinas/imunologia , Surtos de Doenças/prevenção & controle , Feminino , Humanos , Vacinas contra Influenza/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae , Pneumonia/prevenção & controle , Pneumonia/virologia , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA